I. Comparaison entre réactions acido-basiques et réactions d'oxydoréduction

	Réaction acido-basique	réaction d'oxydoréduction
Type de particules transférées	transfert de protons H⁺	transfert d'électrons e
Couples	acide / base donne H ⁺ capte H ⁺	oxydant / réducteur capte e- donne e-
Demi équation symbolique	acide = .H⁺ + base	oxydant + n.e ⁻ = réducteur
Réaction entre deux couples	acide 1 + base 2 → base 1 + acide 2	oxydant 1 + réducteur 2 → réducteur 1 + oxydant 2

II. Comment équilibrer une demi équation redox?

- 1. Ecrire l'oxydant d'un coté, le signe égal, puis le réducteur
- 2. Equilibrer les atomes de l'éléments commun à l'oxydant et au réducteur
- 3. Equilibrer les atomes d'oxygène en ajoutant des molécules d'eau H2O
- 4. Equilibrer les atomes d'hydrogène avec des ions H
- 5. Equilibrer les charges électriques en utilisant des électrons

III. Couples à connaître

Couple acide / base	demi équations associées
NH ₄ ⁺ / NH ₃	NH4 ⁺ = NH3 + H ⁺
CH ₃ CO ₂ H / CH ₃ CO ₂ -	$CH_3CO_2H = CH_3CO_2^- + H^+$
H₃O⁺ / H₂O	H₃O ⁺ = H₂O + H ⁺
H ₂ O / HO ⁻	H₂O = HO⁻ + H⁺

Couple oxydant / réducteur	demi équations associées
M_{aq}^{n+} / M_s	M_{qq}^{n+} + n.e ⁻ = M_s
Fe ³⁺ / Fe ²⁺	Fe ³⁺ + e ⁻ = Fe ²⁺
H_{aq}^{\dagger}/H_{2g}	2H ⁺ _{aq} + 2.e ⁻ = H _{2 g}
I _{2 aq} / I ⁻ _{aq}	$I_{2 aq} + 2.e^{-} = 2 I_{aq}^{-}$
MnO_4^- aq / Mn^{2+} aq	$MnO_{4^{-}aq} + 8 H^{+} + 5.e^{-} = Mn^{2+}_{aq} + 4 H_{2}O$
S ₄ O ₆ ²⁻ _{aq} / S ₂ O ₃ ²⁻ _{aq}	$S_4O_6^{2-}$ + 2.e = 2 $S_2O_3^{2-}$ aq
O ₂ / H ₂ O	$O_2 + 4 H^+ + 4.e^- = 2 H_2O$