

Etude d'une eau minérale

Pour différents maux, il peut être intéressant de boire une eau riche en minéraux comme le magnésium et le calcium. Mais des doses importantes de **sulfate** dans l'eau que l'on boit, peuvent avoir un effet

laxatif sur l'organisme.

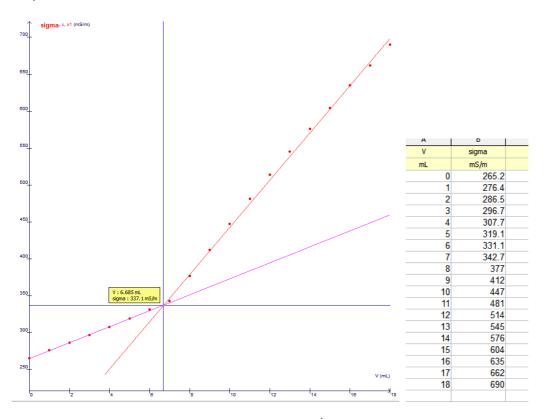
L'étiquette de l'eau d'Hépar, indique qu'il y a 1530mg.L⁻¹ d'ions sulfate SO_4^{2-} dans une bouteille d'Hépar

Les ions sulfate SO₄²⁻ réagissent avec les ions baryum Ba²⁺ selon la réaction :

$$SO_4^{2-}$$
_(aq) + Ba^{2+} _(aq) \rightarrow $BaSO_{4(s)}$

Matériel disponible:

- Pipette jaugée 10mL + propipette
- Hépar
- Conductimètre
- ordinateur avec atelier scientifique
- chlorure de baryum C_{BaCl2}=2,0.10⁻¹mol.L⁻¹
- Burette + agitateur magnétique
- Béchers
- éprouvette 100mL


Donnée: M_S=32g.mol⁻¹ et M_O=16g.mol⁻¹

A l'aide des documents et du matériel à disposition, proposer un protocole, et le faire valider par l'enseignant, permettant de vérifier la concentration massique en sulfates dans 80mL d'eau d'Hépar.

Mes résultats

Veq=6.685mL

 $C_{\text{SO4}} = C_{\text{Ba}} \times V_{\text{eq}} / V_{\text{h\'e}\text{par}} = 0,2^{*}6.685/80 = 0,0167 \\ \text{mol.L}^{-1} \ donc \ Cm_{\text{SO4}} = C \times M = 1.604 \\ \text{g/L} = 1604 \\ \text{mg/L} = 1604 \\ \text{mg/$

L'étiquette indique 1530mg/L

Er=|1604-1530-/1530=4.8%<5% donc Er acceptable

ATTENTION : bien laisser lors du relevé de la conductivité, avec le précipité formé, il se peut que sigma ait du mal à se stabiliser.